estimated that the onset of wearable biosensors in the near future could be benchmarking
game changers in various fields of electro-analytical quality and quantificational analysis.
References
1. P. Panjan, V. Virtanen, A.M. Sesay, Determination of stability characteristics for electro
chemical biosensors via thermally accelerated ageing, Talanta. 170 (2017) 331–336. 10.1016/
j.talanta.2017.04.011
2. D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: Recommended
definitions and classification, Biosens. Bioelectron. 16 (2001) 121–131. 10.1016/S0956-5663(01)
00115-4
3. V. Perumal, U. Hashim, Advances in biosensors: Principle, architecture and applications,
J. Appl. Biomed. 12 (2014) 1–15. 10.1016/j.jab.2013.02.001
4. D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors – Sensor
principles and architectures, Sensors. 8 (2008) 1400–1458. 10.3390/s8031400
5. P.J. Conroy, S. Hearty, P. Leonard, R.J. O’Kennedy, Antibody production, design and use for
biosensor-based applications, Semin. Cell Dev. Biol. 20 (2009) 10–26. 10.1016/j.semcdb.
2009.01.010
6. S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West,
G. Lanfranchi, Overview of electrochemical DNA biosensors: New approaches to detect the
expression of life, Sensors (Switzerland). 9 (2009) 3122–3148. 10.3390/s90403122
7. C. Liu, D. Yong, D. Yu, S. Dong, Cell-based biosensor for measurement of phenol and ni
trophenols toxicity, Talanta. 84 (2011) 766–770. 10.1016/j.talanta.2011.02.006
8. L. Lu, X. Hu, Z. Zhu, Biomimetic sensors and biosensors for qualitative and quantitative analyses
of five basic tastes, TrAC – Trends Anal. Chem. 87 (2017) 58–70. 10.1016/j.trac.2016.12.007
9. A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic
biosensors, Biotechnol. Adv. 30 (2012) 489–511. 10.1016/j.biotechadv.2011.09.003
10. I. Abdulhalim, M. Zourob, A. Lakhtakia, Overview of Optical Biosensing Techniques, (2008).
10.1002/9780470061565.hbb040
11. G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella,
M.I. Demartis, V. Fiore, R. Manetti, P.A. Serra, Enzyme biosensors for biomedical applica
tions: Strategies for safeguarding analytical performances in biological fluids, Sensors
(Switzerland). 16 (2016). 10.3390/s16060780
12. R. Monošík, M. Streďanský, E. Šturdík, Biosensors – classification, characterization and new
trends, Acta Chim. Slovaca. 5 (2012) 109–120. 10.2478/v10188-012-0017-z
13. A. Plecis, Y. Chen, Fabrication of microfluidic devices based on glass-PDMS-glass tech
nology, Microelectron. Eng. 84 (2007) 1265–1269. 10.1016/j.mee.2007.01.276
14. B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam, U.C. Nze, S.K. Kamarapu,
A review of current methods in microfluidic device fabrication and future commercialization
prospects, Inventions. 3 (2018). 10.3390/inventions3030060
15. P. Rewatkar, S. Goel, Paper-Based Membraneless Co-Laminar Microfluidic Glucose Biofuel
Cell with MWCNT-Fed Bucky Paper Bioelectrodes, IEEE Trans. Nanobioscience. 17 (2018)
374–379. 10.1109/TNB.2018.2857406
16. P. Rewatkar, J. U. S. S. Goel, Optimized Shelf-Stacked Paper Origami-Based Glucose Biofuel Cell
with Immobilized Enzymes and a Mediator, ACS Sustain. Chem. Eng. 8 (2020) 12313–12320. 10.
1021/acssuschemeng.0c04752
17. P. Rewatkar, S. Goel, 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid,
Optimized and Enhanced Approach, IEEE Trans. Nanobioscience. 19 (2020) 4–10. 10.1109/
TNB.2019.2941196
Printable and Flexible Biosensors
369